

BELGRADE SECURITY WAS A SECURITY OF SECURI

Identifying users behind NAT devices

Matěj Grégr

Network Address Translation

- Several NAT variants are described in RFC 3489
 - One-to-One = Full Cone = Static
 - Restricted cone, Port Restricted cone, Symetric

- Real implementations use own algorithms
 - Dynamic NAT is not standardized

- CGNAT
 - NAPT in ISP networks (NAT444)

NAT and user identification

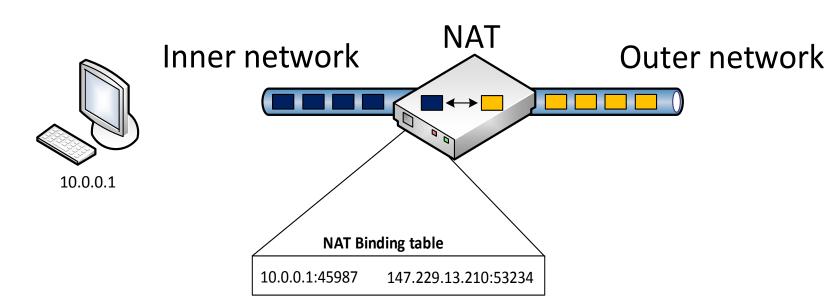
- User identification is lost if address translation is performed
- End server must log enough information time, IP address, port number
- Several ways for keeping user identification:
 - User obtains fixed set of ports
 - Translation table is exported to another device:
 - NetFlow NEL
 - iptables ulogd
 - Export directly to a database
 - SNMP

• ...

NAT and NetFlow?

- NetFlow is popular accounting tool for keeping metadata about network communication
- Cisco NEL
 - NetFlow extension Cisco only
 - Only creation/deletion of mapping is exported transferred bytes are missing
- NetFlow and research:
 - Detection number of devices behind NAT
 - Detection NAT traffic from NetFlow data

Network Address Translation


Src IP address: 10.0.0.1:45987

Dst IP address: 8.8.8.8:53

Src IP address: 147.229.13.210:53234

Dst IP address: 8.8.8.8:53

><

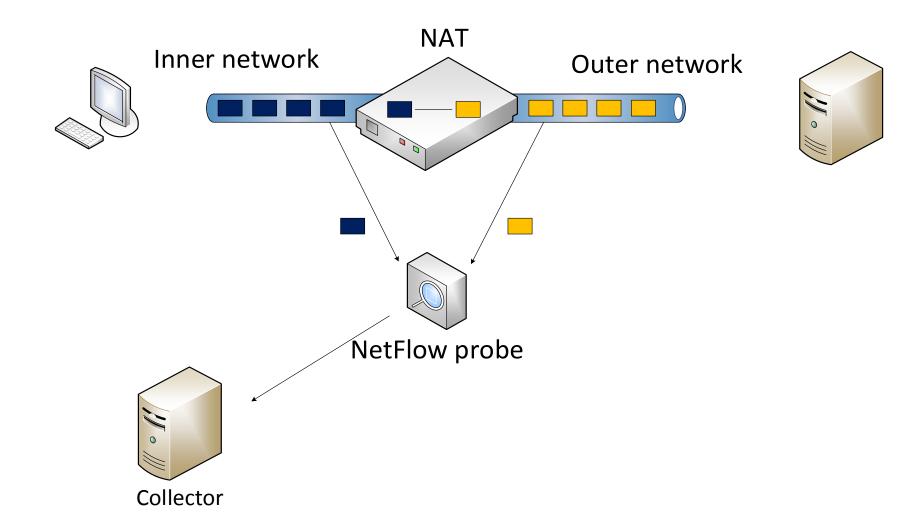
Src IP address: 8.8.8.8:53

Dst IP address: 10.0.0.1:45987

Src IP address: 8.8.8.8:53

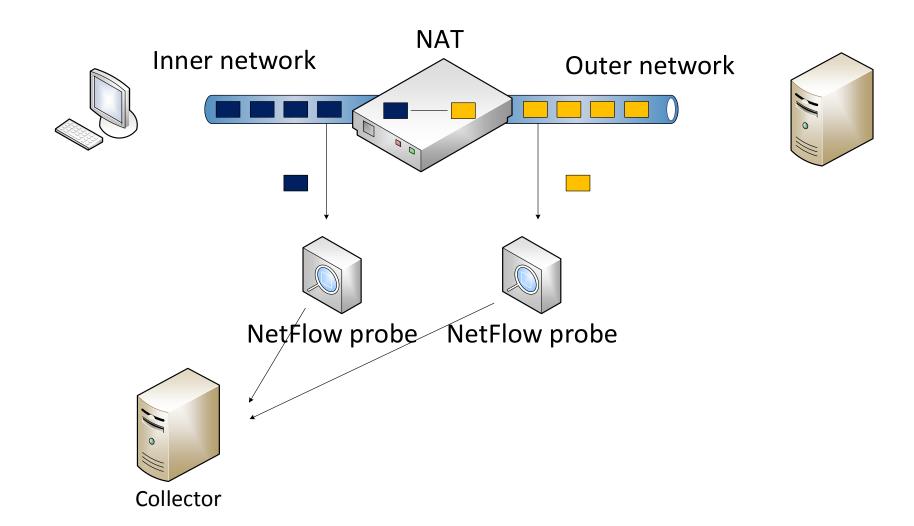
Dst IP address: 147.229.13.210:53234

NAT NetFlow export




```
□ FlowSet 1

    FlowSet Id: (Data) (256)
    FlowSet Length: 44
  □ Flow 1
      SrcAddr: 10.10.10.1 (10.10.10.1)
      Post NAT Source IPv4 Address: 192.168.1.10 (192.168.1.10)
      DstAddr: 8.8.8.8 (8.8.8.8)
      Post NAT Destination IPv4 Address: 8.8.8.8 (8.8.8.8)
      SrcPort: 9
      Post NAPT Source Transport Port: 1
      DstPort: 1
      Post NAPT Destination Transport Port: 1
      Ingress VRFID: 0
      Protocol: 1
      Nat Event: 1
      Observation Time Milliseconds: Jun 7, 2013 18:33:42.408000000 Central Europe Daylight Time
    Padding (2 bytes)
```


NAT – possible way to monitor traffic

NAT – possible way to monitor traffic

NAT – available information

- NetFlow probes don't have access to translation table
- We have to create statefull information in stateless monitoring
- TCP sequence number can be used
- UDP/ICMP hash of the packet payload can be used

Computation is done only with first packet of the flow

 The general idea: If a probe capture packet on a inner link, it should capture the packet on the outer link as well

Stateless monitoring, Statefull information

- Abstract idea: Interprocess/probes communication
 - Syncrhonization between monitoring processes or probes
- Possible solutions:
 - Interprocess communication cannot be used for two separate probes
 - Shared memory same as above
 - In memory database: Memcached, Redis
- Redis as in-memory key-value cache
 - Active development, library for most languages
 - Simple, fast, stable time complexity for queries
 - Records can have TTL they are purged from database after period of time

NAT accounting – implementation

- Probe concept tested using Flowmon probe from Invea-Tech
- Probes are extended with plugins:
 - Packet processing and parsing
 - Computation of statefull information
 - Saving to a cache
 - Export NetFlow data to a collector

- ID is exported inside NetFlow data
 - IPFIX
 - A field in current NetFlow (ASN)

NAT – possible way to monitor traffic

Src IP address: 10.0.0.1:45987

Dst IP address: 8.8.8.8:53

Src IP address: 147.229.13.210:53234

Dst IP address: 8.8.8.8:53

Postprocessing on a collector

- NetFlow collector contains data before and after translation
- Flows before and after are combined based on ID value
- Libnf library is used for NetFlow data manipulation
- A flow with all information is created

Benchmark and testing

- Memory cache basic benchmark shows 100 000 insert/delete operations/s
 - Without any optimization

- Without any sampling, all records are available
 - Can be used for fulfill data retention laws

Conclusion

- Users behind NAT can be monitored using NetFlow
- Performance is good enough even for large networks
- Collected NetFlow data contains all necessary information

BELGRADE SECURITY WAS A SECURITY WITH A SECURITY WAS A SECURITY OF THE SECURIT